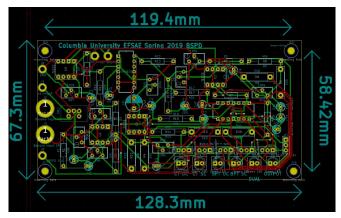
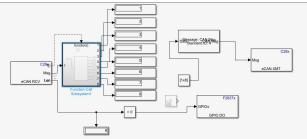
Electrical Engineering at FSAE

An overview of the electrical work involved in building an EV

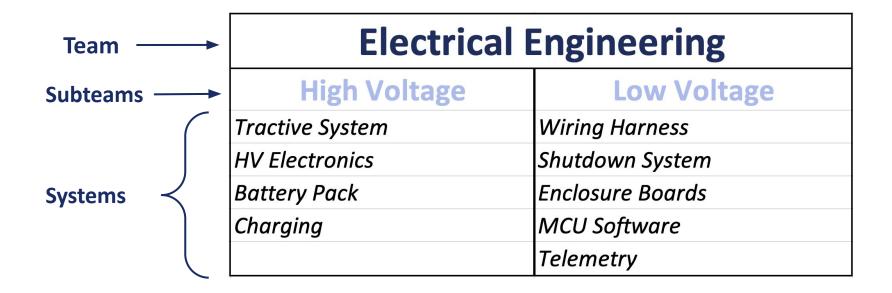
What do we do?

Completely design, manufacture, and drive a formula-styled electric vehicle to compete at an intercollegiate Formula SAE competition!





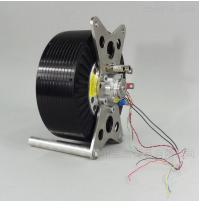
Why Join FSAE?


- Apply skills that will be useful in industry including:
 - PCB Design (using KiCad)
 - Code, model, and simulate using MATLAB Simulink
 - LTSpice modeling and simulation
 - Electronics hardware testing
- Connect with experts in the automotive industry
- Hands on experience with real engineering problems
- Be part of a highly motivated and passionate team

Electrical Engineering Team

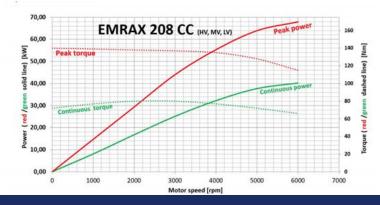
*High Voltage is any voltage that is 60V or greater as per the FSAE rules

High Voltage Subteams

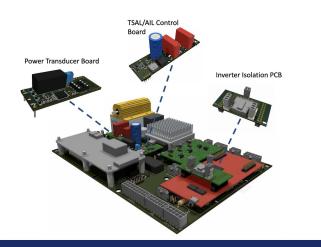


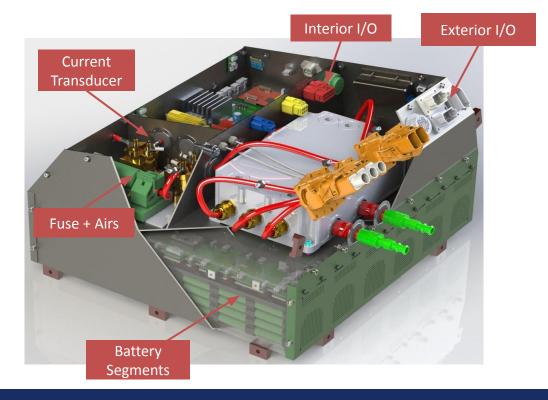
Tractive System

- The tractive system converts the DC output of the battery pack into spinning of the motor
- Includes the isolation relays, inverter, tractive system measuring points, and the motor
- Works closely with the drivetrain system on the mechanical side which converts the spinning of motor to motion of the vehicle



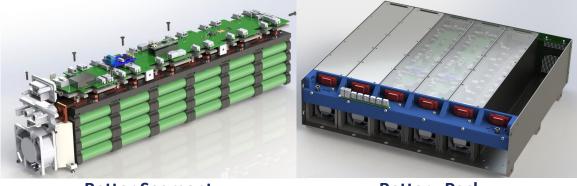
Emrax 208 PMSM Motor


Cascadia PM100DX Inverter



HV Electronics

- Various circuits responsible for monitoring and controlling high voltage in the vehicle
- Some of these electronics are:
 - Insulation monitoring device
 - Tractive System Active Light
 - Accumulator Indicator Light
 - Precharge/Discharge circuit



Battery Pack

- Assembling the battery pack and building a battery management system
- In house battery management system design with individual breakout PCBs for each battery segment each communicating with an MCU
- 6 battery segments contain 12s8p configuration of 18650 Li-lon cells

Batter Segment

Battery Pack

BMS Breakout Board

Charging

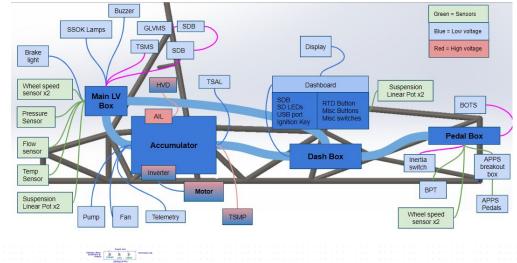
- Designing and building the charging circuitry on the accumulator charging cart
- ElCon PFC5000 charger used to charge the battery pack with a maximum power output of 5kW
- Charger and accumulator communicate through the CAN Bus

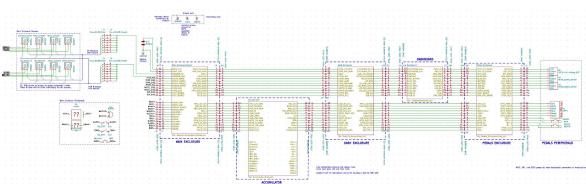
CAN Communication

with Charger

ElCon PFC5000

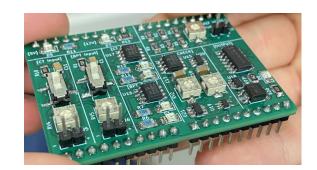
TRACE	ID	DLC	DATA 0	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	TIME STAMP (sec)	TIME DELTA (sec)	1
TX	0x1806E7F4x	8	0x00	0x78	0×00	0x05	0x00	0×00	0×00	0x00	21.8902	3007.743	
RX	0x18FF50E7x	8	0x00	0x57	0×00	0x00	0x00	0×00	0x00	0x00	1309.1150	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0×00	0x00	0x00	0x00	0×00	0x00	1308.6150	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0x00	0x00	1308.1150	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0x00	0x00	1307.6149	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0×00	0x00	0x00	0x00	0×00	0x00	1307.1149	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0x00	0x00	1306.6149	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0×00	0x00	1306.1149	1284.238	
TX	0x1806E7F4x	8	0x00	0x78	0x00	0x05	0x00	0x00	0x00	0x00	21.8771	3011.229	_
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0x00	0x00	1305.6149	0.500	_
RX	0x18FF50E7x	8	0x00	0x57	0×00	0x00	0x00	0x00	0×00	0x00	1305.1149	0.501	_
RX	0x18FF50E7x	8	0x00	0x57	0x00	0x00	0x00	0x00	0x00	0x00	1304.6140	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0×00	0×00	0x00	0×00	0x00	0x00	1304.1140	0.500	
RX	0x18FF50E7x	8	0x00	0x57	0×00	0x00	0x00	0x00	0x00	0x00	1303.6140	0.500	
nv	A.10FFE0F7.	0	0.00	0.57	0.00	0.00	0.00	0.00	0.00	0.00	1202 1140	0.500	_

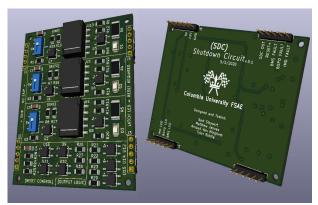

Low Voltage Subteams



Wiring Harness

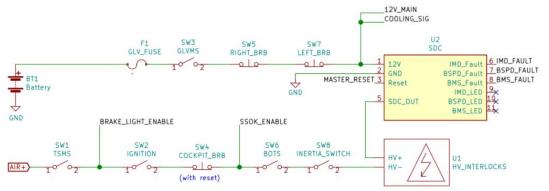
- Design and assembly of all of the conduits between LV enclosures, the accumulator, and peripherals
- Responsible for sensor placement and dashboard electronics as well





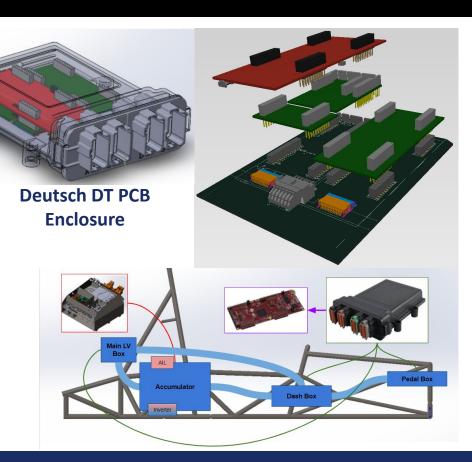
Shutdown System

 Cuts the supply of high voltage from the battery pack to the inverter in the case of a fault



BSPD

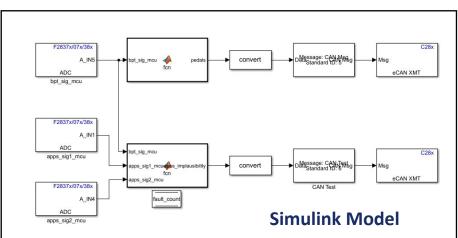
 Consists of a series of switches, sensors, buttons, interlocks, the Brake System Plausibility Device, and ultimately the Shutdown Circuit



Enclosure Boards

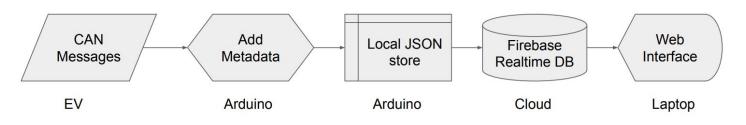
- Design, assembly, and testing of the three LV enclosure boards: Main LV Enclosure, Dashboard Enclosure, and Pedals Enclosure
- Enclosure boards contain a stack of PCBs specific for their purpose and each contains a C2000 LaunchXL MCU
- Enclosures control and distribute power to peripherals, communicate with each other and the accumulator through a CAN Bus, and store telemetry data for further analysis

MCU Software


- MCUs used:
 - LAUNCHXL-F28379D
 - LAUNCHXL-F28069M
- Software is developed using MATLAB Simulink, a graphical programming environment
- The MCUs take in sensor data, control LEDs and other peripherals, and send CAN messages

LaunchXL-F28379D

LAUNCHXL-F28069M



Telemetry

- Telemetry system will receive sensor data through the CAN messages sent by the MCUs, package the data, and then send it to a Firebase Realtime DB
- Data will be uploaded to the database with an Arduino MKR WiFi 1010
- A user friendly GUI will also be developed to present the data on a laptop

oid onReceive(int packetSize) { Serial.print("Received "): if (CAN.packetExtended()) { Serial.print("extended "); if (CAN.packetRtr()) { // Remote transmission request, packet contains no data Serial.print("RTR "): Serial.print("packet with id 0x"); Serial.print(CAN.packetId(), HEX); if (CAN.packetRtr()) { Serial.print(" and requested length "); Serial.println(CAN.packetDlc()): } else { Serial.print(" and length "); Serial.println(packetSize); while (CAN.available()) { byte new value = CAN, read(); Serial.print(new value): upload data(new value); Serial.println():

Join FSAE

Scan the QR Code to join our mailing list:

Expect an email about our **first General Body Meeting**, especially targeted to new members, which will take place on **Wednesday September 14 at 9PM**.

COLUMBIA UNIVERSITY